Electron transport in fluctuating biological media

Spiros S. Skourtis

Department of Physics, University of Cyprus Nicosia Cyprus

<u>Adventures in Theory Series</u> <u>Duke Univ.</u> Aug. 13 2008

Molecular Electron Transfer (ET) reactions

Ubiquitous in physical-chemical & biological processes

all oxidation/reduction reactions, bioenergetics, disease, molecular-electronic devices (nano-bio)

Theoretically interesting

electron transport through dynamic & responsive (floppy) molecular media

Transport mechanisms of biological ET reactions

Coherent tunneling & resonant tunneling to thermally activated hopping

Main focus of talk is on tunneling ET reactions in proteins

Biological electron transfer (ET) reactions mediated by tunneling

• Often long distance ET:

The electron transfers from an initial localized (donor) state to a final localized (acceptor) state through intervening molecular matrix (bridge). Distance can be ~10Å

• Bridge:

Protein and/or DNA, hundreds of atoms between donor/acceptor

• Donor (acceptor):

metals atoms, small organic molecules, aminoacids, DNA bases

MAIN EXP. OBSERVABLE: <u>ET rate</u> biological rates: (psec)⁻¹ or slower

Qualitative picture of molecular ET reactions mediated by tunneling

- Thermal fluctuations of molecule+solvent induce D-A resonance
- ET by tunneling takes place at D-A resonance
- ET RATE:

$$k_{ET} \propto T_{DA}^{2} e^{-U^{act}/K_{B}T}$$

Tunneling matrix element (coupling)

between D and A

Boltzmann factor for activation to resonance conformation Energy of ET molecule + solvent excluding kinetic energy of atoms

T_{DA}: Donor-Acceptor coupling (tunneling matrix element)

Bridge atoms lower tunneling barrier and enhance the Donor-Acceptor coupling

Biomolecules are **very floppy**: Fluctuating barrier tunneling

Bridge thermal motion \rightarrow Fluctuating tunneling matrix element: T_{DA}(t)

ET rate for a fluctuating tunneling matrix element

In high-temp limit:

$$k_{ET} = \frac{2\pi}{\hbar} \left\langle T_{DA}^{2} \right\rangle \rho_{FC}$$

Energy

Average of T_{DA}^2 over diff. molecular conformations

FC factor

$$\rho_{FC} = \frac{1}{\sqrt{2\pi \sigma_{\Delta U}^{2}}} \exp\left[-U^{act}/K_{B}T\right]$$

rms fluctuation in the D-A energy gap: U_D-U_A

Collective system coord

Some central questions of interest to theory and experiment (addressed in this talk)

How does electron tunneling ($\langle T_{DA}^2 \rangle$) depend on:

• The structure of the ET biomolecule

• The dynamics of the ET biomolecule

• The nature of the D and A states

Dependence of electron tunneling on biomolecular structure

Different proteins have different structures (folds)

Protein Data Bank @ http://www.pdb.org/

Proteins vs other media

Structure-function analysis of T_{DA}

Input: experimental protein structure \rightarrow

Hamiltonian/Fock matrix \rightarrow

Quantum electronic structure calculations

• Computation of T_{DA}

Effective Hamiltonian & Green's function methods

Energy-splitting methods

Mulliken-Hush methods (excited state calcs)

• Analysis of T_{DA}

Green's function tunneling pathways

Tunneling currents

Substitutions & pruning

Reviews

- S.S. Skourtis and D.N. Beratan <u>Adv. Chem. Phys.</u> 106, 377 (1999)
- *M.D. Newton, in: <u>Electron Transfer in Chemistry</u>, Vol I, Ed. V. Balzani, Wiley-VCH Verlag GmbH: Weinheim, Germany p. 3. (2001)*
- A.A. Stuchebrukhov <u>Adv. Chem. Phys.</u> 118, 1 (2001)
- N. Roch & A.A. Voityuk, in: <u>Long-Range Electron Transfer in DNA</u> Vol II, ed. G. Schuster Top. Curr. Chem. P. 37 (2004)

Tunneling pathway decomposition of T_{DA}

$$T_{DA} = \left\langle D \left| \hat{T} \right| A \right\rangle$$

Very useful for the interpretation of tunneling in terms of bridge structure

$$\langle D | \hat{T} | A \rangle = \langle D | \hat{V} \ \hat{G}^{(B)} (E_{tun}) \ \hat{V} | A \rangle$$

Dependence of tunneling on molecular dynamics

Review

S.S. Skourtis, J. Lin, and D. N. Beratan
The effects of bridge motion on electron transfer reactions mediated by tunneling <u>Modern methods for Theoretical Physical Chemistry of Biopolymers,</u>
E. B. Starikov, S. Tanaka, and J. P. Lewis, editors, Elsevier, pp. 357-379 (2006)

A protein fluctuates around its structure

<u>Time scales of structural fluctuations:</u> tens of fsec to µsec/msec

Size of structural fluctuations: a few to tens of Angstroms

Are static methods transferable to time dep. systems?

When and how do they become bad approximations?

How does one compute time dep. pathways?

- Analytical work
- Simulations of simple tight-binding models
- Simulations of the protein azurin (molecular dynamics+electronic structure)

- A. Teklos and S. S. Skourtis <u>Chem. Phys.</u> 319, 52-68 (2005)
- S. S. Skourtis <u>Chem. Phys. Lett.</u> 372, 224-231 (2003)
- S. S. Skourtis, G. Archontis and Q. Xie <u>J. Chem. Phys.</u> 115, 9444-9462 (2001)
- Q. Xie, G. Archontis and S. S. Skourtis Chem. Phys. Lett. 312, 237-246 (1999)

Molecular-dynamics (MD) simulations coupled to quantum electronic-structure calculations

• MD simulations \rightarrow

ensemble of molecular conformations

For each molecular conformation

Electronic-structure calculations →
 Input for computation of:

Electron donor and acceptor states
 Tunneling matrix element T_{DA}
 Tunneling pathway analysis

$T_{DA} \text{ fluctuation effects}$ $\left\langle T_{DA}^{2} \right\rangle = \left\langle T_{DA} \right\rangle^{2} + \sigma_{T_{DA}}^{2}$

$$\sigma_{T_{DA}}^{2} << \langle \mathrm{T_{DA}} \rangle^{2}$$

<u>SMALL</u> T_{DA} fluctuations

EQUILIBRIUM MOLECULAR STRUCTURE DETERMINES STRONG ET PATHWAYS

1

$$\downarrow k_{DA} \approx \frac{2\pi}{\hbar} \langle T_{DA} \rangle^2 \rho_{FC}$$

Static calculation of T_{DA} is OK (e.g., for minimum energy conformation)

$$\sigma_{T_{DA}}^{2} >> \langle T_{DA} \rangle^{2}$$

<u>LARGE</u> T_{DA} fluctuations

NON-EQUILIBRIUM MOLECULAR STRUCTURES DETERMINE STRONG ET PATHWAYS

$$k_{DA} = \frac{2\pi}{\hbar} \left\langle T_{DA}^{2} \right\rangle \rho_{FC}$$

Rate is determined by non-equil. conformations with strongest T_{DA}

Extensive MD sampling is necessary

T_{DA} fluctuation effects in the ET protein azurin

S.S. Skourtis, I. Balabin, T. Kawatsu, and D.N. Beratan Proc. Natl. Acad. Sci. USA 102, 3552 (2005)

Fluctuations become important for large donor-acceptor distances

$$R_{DA} < R_c$$

 $R_{DA} > R_c$

 $\sigma_{T_{\rm DA}} < \langle T_{\rm DA} \rangle$

 $\sigma_{T_{\rm DA}} > \langle T_{\rm DA} \rangle$

Water-mediated tunneling

 $R_c = 2-3$ Angstroms

Protein-mediated tunneling $R_c = 6-7$ Angstroms

Do fluctuations wash out structural differences?

I. Balabin, D.N. Beratan and S.S. Skourtis (submitted)

FLUCTUATIONS DO NOT WASH OUT STRUCTURAL DIFFERENCES IN PROTEINS

(FLUCTUATIONS DEPEND ON STRUCTURE)

Dependence of tunneling on the electron donor and electron acceptor states

Excited-state ET \rightarrow Electron donor state is photo-prepared

DNA photolyase

Electron transfer protein that repairs UV-damaged DNA upon absorption of a photon • Absorption of UV radiation by DNA can lead to the creation of pyrimidine dimers

A. Shancar Chem. Rev. 103, 2203-2237 (2003)

• A pyrimidine dimer distorts DNA & interferes with DNA replication

A. Mees et al. Science 306, 1789-1793 (2004)

• DNA photolyase binds to DNA & repairs the damaged dimer

Protein contains:

An electron donor molecule (FADH-)

An antenna molecule (5-10 MTHF or 8-HDF)

Mechanism of DNA repair

• Protein binds to DNA at the position of the dimer

• Antenna molecule absorbs a photon (350-500 nm)

• Antenna transfers energy to electron donor molecule

• Donor molecule transfers an electron to the dimer

• Injection of electron initiates dimer repair

The Photo-repair Cycle

The structure of a DNA photolyase bound to a DNA oligomer (2004)

Examination of ET mechanism

T. Prytkova, D.N. Beratan and S.S. Skourtis Proc.Natl. Acad. Sci. USA 104, 802 (2007)

- MD simulations of protein with thymine dimer in the active site Amber 8.0
- Calculation of the excited electron donor state in FADH⁻

• Calculation of FADH⁻ - dimer $< T_{DA}^{2} >$

• Structure-function analysis of $\langle T_{DA}^2 \rangle$

Excited-state calculations of FADH-* elec. donor state

Methods:

• Intermediate Neglect of Differential Overlap/Configuration Interaction Singles (INDO/S CIS)

• Time Dependent Density Functional Theory (TDDFT)

B3LYP, BHandHLYP 6-31+G(d)

• Time Dependent Hartree-Fock Theory (TDHF), CIS

Solvated FADH⁻ in the protein active-site environment (represented by atomic point charges)

T_{DA} calculations

Methods:

• INDO/S

Green's function, energy splitting, generalized Mulliken-Hush

• Rms T_{DA} computed by averaging over MD trajectories

 Tunneling pathway analysis: Modified-donor-cofactor approach

Excited state calculation results

Photo-excitation shifts the donor electron next to the thymine dimer $(\pi \rightarrow \pi^* \text{ charge transfer transition of flavin ring})$

T_{DA} calculation results

The $\pi \rightarrow \pi^*$ charge transfer transition enhances T_{DA} & determines the ET pathways

The excited electron directly tunnels to the dimer mainly through CH₃

Dimer – Full FADH⁻ system

 $T_{DA}^{rms} \approx 5 \times 10^{-4} eV$

Dimer – FADH⁻(no adenine)

 $T_{DA}^{rms} \approx 5 \times 10^{-4} eV$

 $\frac{\text{Dimer} - \text{FADH}^{-}(\text{no CH}_{\underline{3}})}{T_{DA}^{rms} \approx 1 \times 10^{-4} eV}$

Conclusion

Photo-selected tunneling pathways

In DNA Photolyase the photo-excitation itself enhances the electronic coupling between FADHand the thymine dimer

Some open and interesting theoretical & computational problems

DNA electron transfer

B.Giese et al. (Nature 412, 318-320 (2001)) $G^+(A)_N(GGG) \rightarrow G(A)_N(GGG)^+$ Different ET mechanisms working in parallel

tunneling

resonant tunneling

thermally activated hopping

E. Hatcher, A. Balaeff, S. Keinan, R. Venkatarami, and D.N. Beratan (JACS) In press

How does one calculate the ET rate?

Important for understanding the dependence of DNA ET rate on:

- donor-acceptor distance
- donor-acceptor energetics
- sequence
- structural motions
- temperature

Reviews::

R.G. Enders, D.L. Cox, and R.P. Singh Rev. Mod. Phys. 76, 195-214 (2004) Long-Range Electron Transfer in DNA Vols I-II, ed. G. Schuster Top. Curr. Chem. (2004)

ET control / ET molecular devices

Molecular double-slit paradigm:

Manipulate ET pathways by IR excitation of pathway-specific vibration

S.S. Skourtis, D.H. Waldeck and D.N. Beratan JPC B 108, 15511-15518 (2004)

D. Xiao, D.N. Beratan, S.S. Skourtis (to be submitted)

Chiral control of electron transmission through molecules

The transmission through helical bridges of electrons carrying angular momentum depends on the bridge handedness

S.S. Skourtis, D.N. Beratan, R. Naaman, A. Nitzan D.H. Waldeck (to be submitted)

Thanks to collaborators

(past and present)

DUKE

Prof. D. N. Beratan Dr. I. Balabin Dr. T. Kawatsu (ex-Duke) Dr. T. Prytkova (ex-Duke) Dr. S. Keinan Dr. J. Lin (ex-Duke) Dr. B. Desinghu D. Xiao H. Carias

<u>Cyprus</u>

Prof. G. Archontis Dr Q. Xie

A. Teklos

C. Aristi

Prof. R. Naaman	(Weizmann Inst. Israel)
Prof. A. Nitzan	(Tel-Aviv Univ. Israel)
Prof. D. Waldeck	(Univ. of Pittsburgh, USA)
Prof. I. Rubtsov	(Tulane Univ. USA)

Funding

Cyprus Research Foundation

Leventis Foundation

University of Cyprus

NIH, NSF, Duke Univ. Theory Initiative

